Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clinics ; 67(1): 35-40, 2012. ilus
Article in English | LILACS | ID: lil-610621

ABSTRACT

OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α) can regulate cytokines (catabolic action) and/or growth factors (anabolic action) in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β) and insulin-like growth factors I (IGF-I) and II (IGF-II) and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K) pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.


Subject(s)
Humans , Chondrocytes/drug effects , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor II/pharmacology , Interleukin-1beta/pharmacology , Osteoarthritis/metabolism , Chondrocytes/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteoarthritis/genetics , /antagonists & inhibitors , /metabolism , RNA, Messenger/analysis , Statistics, Nonparametric , Signal Transduction/drug effects , Signal Transduction/genetics
2.
Clinics ; 66(3): 487-492, 2011. ilus, tab
Article in English | LILACS | ID: lil-585963

ABSTRACT

INTRODUCTION: Numerous experimental efforts have been undertaken to induce the healing of lesions within articular cartilage by re-establishing competent repair tissue. Adult mesenchymal stem cells have attracted attention as a source of cells for cartilage tissue engineering. The purpose of this study was to investigate chondrogenesis employing periosteal mesenchymal cells. METHODS: Periosteum was harvested from patients who underwent orthopedic surgeries. Mesenchymal stem cells were characterized through flow cytometry using specific antibodies. The stem cells were divided into four groups. Two groups were stimulated with transforming growth factor β3 (TGF-β3), of which one group was cultivated in a monolayer culture and the other was cultured in a micromass culture. The remaining two groups were cultivated in monolayer or micromass cultures in the absence of TGF-β3. Cell differentiation was verified through quantitative reverse transcription-polymerase chain reaction (RT-PCR) and using western blot analysis. RESULT: In the groups cultured without TGF-β3, only the cells maintained in the micromass culture expressed type II collagen. Both the monolayer and the micromass groups that were stimulated with TGF-β3 expressed type II collagen, which was observed in both quantitative RT-PCR and western blot analysis. The expression of type II collagen was significantly greater in the micromass system than in the monolayer system. CONCLUSION: The results of this study demonstrate that the interactions between the cells in the micromass culture system can regulate the proliferation and differentiation of periosteal mesenchymal cells during chondrogenesis and that this effect is enhanced by TGF-β3.


Subject(s)
Adult , Humans , Middle Aged , Chondrogenesis/drug effects , Mesenchymal Stem Cells , Periosteum/cytology , /pharmacology , Analysis of Variance , Blotting, Western , Cell Differentiation , Cells, Cultured , Collagen Type II/biosynthesis , Gene Expression , Mesenchymal Stem Cells , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL